Free-Knot Polynomial Splines with Confidence Intervals
نویسندگان
چکیده
We construct approximate confidence intervals for a nonparametric regression function, using polynomial splines with free-knot locations. The number of knots is determined by generalized cross-validation. The estimates of knot locations and coefficients are obtained through a non-linear least squares solution that corresponds to the maximum likelihood estimate. Confidence intervals are then constructed based on the asymptotic distribution of the maximum likelihood estimator. Average coverage probabilities and the accuracy of the estimate are examined via simulation. This includes comparisons between our method and some existing methods such as smoothing spline and variable knots selection as well as a Bayesian version of the variable knots method. Simulation results indicate that our method works well for smooth underlying functions and also reasonably well for discontinuous functions. It also performs well for fairly small sample sizes.
منابع مشابه
Free Knot Polynomial Spline Confidence Intervals
We construct approximate confidence intervals for a nonparametric regression function. The construction uses polynomial splines with free knot locations. The number of knots is determined by the GCV criteria. The estimates of knot locations and coefficients are obtained through a nonlinear least square solution that corresponds to the maximum likelihood estimate. Confidence intervals are then c...
متن کاملSplines and Finite Element Spaces
Splines are piecewise polynomial functions that have certain “regularity” properties. These can be defined on all finite intervals, and intervals of the form (−∞, a], [b,∞) or (−∞,∞). We have already encountered linear splines, which are simply continuous, piecewise-linear functions. More general splines are defined similarly to the linear ones. They are labeled by three things: (1) a knot sequ...
متن کاملEfficient estimation of 3-dimensional centerlines of inner carotid arteries and their curvature functions by free knot regression splines
This work stems from the need for accurate estimation of the curvature function of an artery, that emerged within ANEURISK Project, a research program that aims at investigating the role of vascular morphology and hemodynamics on the pathogenesis of cerebral aneurysms. We develop here a regression technique that exploits free knot splines in a novel setting, to estimate 3-dimensional curves, an...
متن کاملKnot intervals and multi-degree splines
This paper studies the merits of using knot interval notation for B-spline curves, and presents formulae in terms of knot intervals for common B-spline operations such as knot insertion, differentiation, and degree elevation. Using knot interval notation, the paper introduces MD-splines, which are B-spline-like curves that are comprised of polynomial segments of various degrees (MD stands for “...
متن کاملOn monotone and convex approximation by splines with free knots
We prove that the degree of shape preserving free knot spline approximation in L p a; b], 0 < p 1 is essentially the same as that of the non-constrained case. This is in sharp contrast to the well known phenomenon we have in shape preserving approximation by splines with equidistant knots and by polynomials. The results obtained are valid both for piecewise polynomials and for smooth splines wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008